Solar flare effects on D-region ionosphere using VLF measurements during low- and high-solar activity phases of solar cycle 24

نویسندگان

  • Abhikesh Kumar
  • Sushil Kumar
چکیده

The effects of solar flares on the propagation of subionospheric VLF signals from NWC and NLK transmitter stations monitored at a low-latitude station, Suva (18.2°S, 178.4°E), Fiji, between December 2006 and December 2010 (an unprecedented solar minimum of solar cycles 23 and 24) and between January 2012 and December 2013 (moderate solar activity at the peak of solar cycle 24) have been analyzed to find solar flare time D-region changes. The amplitude and phase enhancements associated with solar flares were observed in the signals from both stations which are due to an increase in the electron density of the D-region as a result of extra ionization caused by the solar flares. The solar flare-induced perturbations in both the amplitude and phase of VLF signals were used to determine D-region ionospheric parameters: H′ (the ionospheric reflection height) and β (rate of increase in electron density with height) using Long Wave Propagation Capability (LWPC) version 2.1 modeling. A comparative analysis of the ionospheric D-region parameter changes carried out for this location shows a greater increase in β and decrease in H′ during low-solar activity period than during moderate-solar activity period, for the same class of flares. Our results also show greater differences in the values of β and H′ for strong flares in comparison with weak flares under both lowand moderate-solar activity conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variability of F2-layer peak characteristics at low latitude in Argentina for high and low solar activity and comparison with the IRI-2016 model

This work presents the study of the variability of foF2 and hmF2 at a low latitude station in South America (Tucumán, 26.9°S, 294.6°E; magnetic latitude 15.5°S, Argentina). Ground based ionosonde measurements obtained during different seasonal and solar activity conditions (a year of low solar activity, 2009 and one of high solar activity, 2016) are considered in order to compare the ionospheri...

متن کامل

Modeling solar flare induced lower ionosphere changes using VLF/LF transmitter amplitude and phase observations at a midlatitude site

Remote sensing of the ionosphere bottom using long wave radio signal propagation is a still going stro g and inexpensive method for continuous monitoring purposes. We present a propagation model describing the time development of solar flare effects. Based on monitored amplitude and phase data from VLF/LF transmitters gained at a mid-latitude site during the currently increasing solar cycle no....

متن کامل

Midlatitude daytime D region ionosphere variations measured from radio atmospherics

[1] We measured the midlatitude daytime ionospheric D region electron density profile height variations in July and August 2005 near Duke University by using radio atmospherics (or sferics for short), which are the high‐power, broadband very low frequency (VLF) signals launched by lightning discharges. As expected, the measured daytime D region electron density profile heights showed temporal v...

متن کامل

Gps-derived Local Tec Mapping over Peninsula Malaysia during Solar Minimum of Sunspot Cycle 24

The ionosphere is the major contributor of errors in Global Positioning System (GPS), especially during the 11-year sunspot cycle. The incoming 11-year sunspot cycle is expected to peak in 2013. The ionosphere condition is distinctly severe during ionospheric disturbances caused by high solar activity, which raises the question of how will this affect the ionosphere in the equatorial region, es...

متن کامل

Solar Latitudinal Distribution of Solar Flares around the Sun and Their Association with Forbush Decreases during the Period of 1986 to 2003

Solar flare events of high importance were utilised to study solar latitudinal frequency distribution of the solar flares in northern and southern hemisphere for the solar cycle 22 to recent solar cycle 23. A statistical analysis was performed to obtain their relationship with sudden storm commencement (SSCs) and Forbush decrease events (Fd) of cosmic ray intensity. An 11-year cyclic variation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018